\(A=4x-5x^2\)
\(=-5\left(x^2-\dfrac{4}{5}x\right)\\ =-5\left(x^2-2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}\right)+\dfrac{4}{5}\)
\(=\dfrac{4}{5}-\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)
Vậy \(MAX_A=\dfrac{4}{5}\) khi \(x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)
A=4x - x2=4x - x2+0
\(A=-\left(x-2\right)^2+\dfrac{4.\left(-1\right).0-4^2}{4.\left(-1\right)}\le\dfrac{4.\left(-1\right).0-4^2}{4.\left(-1\right)}=4\)
đẳng thức xảy ra khi x-2=0 suy ra x=2
vậy MAXA=4 tại x=2