\(A=\dfrac{15}{10+\left(x+1\right)\left(x-4\right)}+2017\)
\(=\dfrac{15}{10+x^2-3x-4}+2017\)
\(=\dfrac{15}{x^2-3x+6}+2017\)
Có \(x^2-3x+6=x^2-2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}=\left(x-\dfrac{3}{2}\right)+\dfrac{15}{4}\ge\dfrac{15}{4}\)
\(\Leftrightarrow A\le2021\)
Dấu = \(\Leftrightarrow x=\dfrac{3}{2}\)
`A=15/(10+(x+1)(x-4))+2017`
`=15/(x^2-3x-4+10)+2017`
`=15/(x^2-3x+6)+2017`
Vì `x^2-3x+6`
`=(x-3/2)^2+15/4>=15/4`
`=>15/(x^2-3x+6)<=15:15/4=4`
`=>A<=2017+4=2021`
Dấu “=” `<=>x=3/2`