Nhân tung ra là xong mờ?
\(=\lim\limits\left(n^3-4n^2-8n+15\right)=\lim\limits\left[n^3\left(1-\dfrac{4n^2}{n^3}-\dfrac{8n}{n^3}+\dfrac{15}{n^3}\right)\right]=+\infty\)
Nhân tung ra là xong mờ?
\(=\lim\limits\left(n^3-4n^2-8n+15\right)=\lim\limits\left[n^3\left(1-\dfrac{4n^2}{n^3}-\dfrac{8n}{n^3}+\dfrac{15}{n^3}\right)\right]=+\infty\)
Tìm lim (\(\dfrac{2021}{n^2}-\left(\dfrac{3}{7}\right)^n+2022\))
A. 2022 B.0 c.\(\infty\) d.-\(\infty\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn biểu thức \(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+\dfrac{3}{x^4}+...+\dfrac{n}{x^{n+1}}\) bằng:
A. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
B. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{2n}\left(x-1\right)^2}\)
C. \(S=\dfrac{x^n-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
D. \(S=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^n\left(x-1\right)^2}\)
Rút gọn tổng: \(S=C\overset{1}{n}+1.2C\overset{2}{n}+2.3C\overset{3}{n}+...+\left(n-1\right)nC\overset{n}{n}\) bằng:
A. \(\left(n-1\right)n.2^{n-2}\)
B. \(n.2^{n-2}\)
C. \(\left(n-1\right)n.2^{n-1}+n\)
D. \(\left(n-1\right)n.2^{n-2}+n\)
Rút gọn tổng: \(S=C\overset{1}{n}+1.2C\overset{2}{n}+2.3C\overset{3}{n}+...+\left(n-1\right)nC\overset{n}{n}\) bằng:
A. \(\left(n-1\right)n.2^{n-2}\)
B. \(n.2^{n-2}\)
C. \(\left(n-1\right)n.2^{n-1}+n\)
D. \(\left(n-1\right)n.2^{n-2}+n\)
ai tìm ra cách sai trong 2 cái giải này giúp mình với: đề bài là tính \(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}\)
C1:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(x^2\left(\sqrt{1+\dfrac{1}{x^2}}\right)-\sqrt[3]{1+\dfrac{1}{x^6}}\right)\)=lim x2(1-1)=0
C2:\(lim\sqrt{x^4+x^2}-\sqrt[3]{x^6+1}=lim\left(\sqrt{x^4+x^2}-x^2-\sqrt[3]{x^6+1}+x^2\right)\\ \)=\(lim\left(\dfrac{x^2}{\sqrt{x^4+x^2}+x^2}-\dfrac{1}{\left(\sqrt[3]{x^6+1}\right)^2+x^2.\sqrt[3]{x^6+1}+x^4}\right)\)
=lim(\(\dfrac{1}{2}-0\))= \(\dfrac{1}{2}\)
mình không biết cách nào đúng ai chỉ cho mình với
Tính đạo hàm:
a) y= \(\left(x^5+2x\right).\left(x^6-3\right).\left(3x^7+6x^2-2\right)\)
b) y= \(\left(x^4-\dfrac{2}{3x}\right)^5\)tại x=10
c) y= \(\dfrac{5x-2}{x+1}\) tại x=4
\(\lim\limits_{\rightarrow-\infty}\left(2x-1\right)\sqrt{\dfrac{x-1}{4x^2+x-5}}\)
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn