Cho \(a>0\) , \(b>0\) thỏa mãn: \(\log_{3a+2b+1}\left(9a^2+b^2+1\right)+\log_{6ab+1}\left(3a+2b+1\right)=2\) .
Tính giá trị của biểu thức: \(P=a+2b\)
Có bao nhiêu giá trị nguyên của m với m >1 sao cho tồn tại số thực x thỏa mãn:
(m\(log_5x\) +3)\(log_5m\) = x -3
Tìm giá trị của tham số \(m\) để phương trình \(4^x-2m.2^x+2m=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa \(x_1+x_2=2\)
Tìm các giá trị của tham số \(m\) để phương trình \(\left(\log_3x\right)^2-m\log_3x+2m-7=0\) có hai nghiệm thực \(x_1;x_2\) thỏa \(x_1.x_2=81\)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ (dưới bình luận). Tìm tất cả các giá trị của tham số m để hàm số y= \(\left|f^2\left(x\right)-4f\left(x\right)+m\right|\) có 7 điểm cực trị (giải theo phương pháp ghép trục)
70. Cho 2 số dương x và y thỏa mãn log2(x+1) + log2(y+1) ≥ 6. Giá trị nhỏ nhất của S = x + y ?
Phương trình \(9^x-3.3^x+2=0\) có 2 nghieemh x1,x2 với \(x1< x2\).Gía trị của A=\(2x_1+3x_2\)
tính giá trị của biểu thức A=log32.log43.log54...log1615 là:
A.1 B.\(\dfrac{3}{4}\) C.\(\dfrac{1}{4} \) D.\(\dfrac{1}{2}\)
Cho log\(a^2+1\) 27 = \(b^2+1\)
Hãy tính giá trị của biểu thức I = log\({ \sqrt {b}\ }\)\({ \sqrt[6]{b^2+1}\ }\) theo b