Lời giải:
Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)
\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)
\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)
Đáp án C.
Lời giải:
Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)
\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)
\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)
Đáp án C.
chứng minh các biểu thức sau (với giả thuyết là các biểu thức đã cho có nghĩa)
1. \(\dfrac{log_ac}{log_{ab}c}\) =1+logab
2. logax (bx)=\(\dfrac{log_ab=log_ax}{1=log_ax}\)
3. \(\dfrac{1}{log_ax}\) + \(\dfrac{1}{log_{a^2}x}\) +...+\(\dfrac{1}{log_{a^n}x}\) =\(\dfrac{n\left(n+1\right)}{2.log_ax}\)
Không sử dụng máy tính, hãy tính :
a) \(\log_2\dfrac{1}{8}\)
b) \(\log_{\dfrac{1}{4}}2\)
c) \(\log_3\sqrt[4]{2}\)
d) \(\log_{0,5}0,125\)
Tính :
a) \(\dfrac{1}{2}\log_736-\log_714-3\log_7\sqrt[3]{21}\)
b) \(\dfrac{\log_224-\dfrac{1}{2}\log_272}{\log_318-\dfrac{1}{3}\log_372}\)
c) \(\dfrac{\log_24+\log_2\sqrt{10}}{\log_220+3\log_22}\)
Với a,b >0,a khác 1 thỏa mãn logab=\(\dfrac{b}{4}\) và log2a=\(\dfrac{16}{b}\).Tổng a+b bằng:
A.12 B.10 C.16 D.18
Tìm x, biết :
a) \(\log_5x=2\log_5a-3\log_5b\)
b) \(\log_{\dfrac{1}{2}}x=\dfrac{2}{3}\log_{\dfrac{1}{2}}a-\dfrac{1}{5}\log_{\dfrac{1}{2}}b\)
Hãy so sánh mỗi cặp số sau :
a) \(\log_3\dfrac{6}{5}\) và \(\log_3\dfrac{5}{6}\)
b) \(\log_{\dfrac{1}{3}}9\) và \(\log_{\dfrac{1}{3}}17\)
c) \(\log_{\dfrac{1}{2}}e\) và \(\log_{\dfrac{1}{2}}\pi\)
d) \(\log_2\dfrac{\sqrt{5}}{2}\) và \(\log_2\dfrac{\sqrt{3}}{2}\)
Chứng minh rằng :
a) \(\log_{a_1}a_2.\log_{a_2}a_3.\log_{a_3}a_4.....\log_{a_{n-1}}a_n=\log_{a_1}a_n\)
b) \(\dfrac{1}{\log_ab}+\dfrac{1}{\log_{a^2}b}+\dfrac{1}{\log_{a^3}b}+.....+\dfrac{1}{\log_{a^nb}}=\dfrac{n\left(n+1\right)}{2\log_ab}\)
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx
cho a,b,c,d là các số thực dương thỏa mãn \(\log_ab \) =\(\dfrac{3}{2}\), \(\log_cd\) = \(\dfrac{5}{4}\) , nếu a-c=9 hì b-d bằng bao nhiêu ?