Bài 1: Tính giá trị của biểu thức sau:
\(P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right).....\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)....\left(23^4+4\right)}\)
Giải PT
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\)
\(\frac{x+4}{\left(x-2\right)\left(x-1\right)}-\frac{x+1}{\left(x-3\right)\left(x-1\right)}=\frac{2x+5}{x\left(x-4\right)}\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
giải pt
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
giải pt trên
rút gọn biểu thức:
\(P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right).....\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)....\left(23^4+4\right)}\)
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)