Ta có : \(x=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}.\dfrac{\sqrt{\sqrt{3}+\sqrt{2}}}{\sqrt{\sqrt{3}-\sqrt{2}}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{1}}=\sqrt{2}\)
Thay \(x=\sqrt{2}\) vào biểu thức A ta được :
\(A=\left(\sqrt{2}^3-2\sqrt{2}+1\right)^{2012}=1^{2012}=1\)
Vậy \(A=1\)