a) \(A=\left(2x^2+x-1\right)-\left(x^2+5x-1\right)\)
\(\Leftrightarrow A=2x^2+x-1-x^2-5x+1\)
\(\Leftrightarrow A=x^2-4x\)
Tại x=-2, ta có :
\(\Leftrightarrow A=\left(-2\right)^2-4\times\left(-2\right)\)
\(\Leftrightarrow A=12\)
b) \(B=-x^4+3x^2-x^3+3-2x-x^2+x^4+x^3-2x^2\)
\(\Leftrightarrow B=-2x+3\)
Với \(x=\dfrac{3}{2}\), ta có :
\(B=-2\times\dfrac{3}{2}+3\)
\(\Leftrightarrow B=0\)