Bài 3: Nhân, chia số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Huỳnh

Tính giá trị của biểu thức:

A=1/1.3+1/3.5+1/5.7+.....+1/99.101

B=1-2+3-4+.......+49-50

Vũ Minh Tuấn
6 tháng 11 2019 lúc 18:49

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow2A=1-\frac{1}{101}\)

\(\Rightarrow2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:2\)

\(\Rightarrow A=\frac{50}{101}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
👁💧👄💧👁
6 tháng 11 2019 lúc 18:50

\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\\ A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{101}\right)\\ A=\frac{1}{2}\cdot\frac{100}{101}\\ A=\frac{50}{101}\)

\(B=1-2+3-4+...+49-50\\ B=\left(1-2\right)+\left(3-4\right)+...+\left(49-50\right)\\ B=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\text{ (có 25 số -1)}\\ B=\left(-1\right)\cdot25=-25\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đinh Thị Quỳnh Anh
Xem chi tiết
Đỗ Nguyễn Đức Trung
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Đàm Khánh
Xem chi tiết
Nguyễn Uyên
Xem chi tiết
๖ۣۜζ¡ểʊ๛ɣêʊ๛ζ¡ղɦ❤
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
lê thị như ý
Xem chi tiết
moonshine
Xem chi tiết