a)<=>\(\frac{x\left(x^2+x-6\right)}{x\left(x-2\right)\left(x+2\right)}\)
<=>\(\frac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}\)
<=>\(\frac{x+3}{x+2}\)(1)
Thay x =98 vào phương trình (1) ta có
=>\(\frac{98+3}{98+2}\)
=>\(\frac{101}{100}\)
a)Ta có: \(\frac{x^3+x^2-6x}{x^3-4x}\)
\(=\frac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}\)
\(=\frac{x^2+3x-2x-6}{x^2-4}\)
\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+3}{x+2}\)
Thay x=98 vào biểu thức \(\frac{x+3}{x+2}\), ta được:
\(\frac{98+3}{98+2}=\frac{101}{100}\)
Vậy: Khi x=98 thì \(\frac{x^3+x^2-6x}{x^3-4x}=\frac{101}{100}\)
b) Ta có: \(\frac{x-xy-y+y^2}{x-y}\)
\(=\frac{\left(x-y\right)-y\left(x-y\right)}{x-y}\)
\(=\frac{\left(x-y\right)\left(1-y\right)}{x-y}\)
\(=1-y\)
Thay \(y=\frac{1}{2}\) vào biểu thức 1-y, ta được:
\(1-\frac{1}{2}=\frac{1}{2}\)
Vậy: Khi \(y=\frac{1}{2}\) thì \(\frac{x-xy-y+y^2}{x-y}=\frac{1}{2}\)