Cho biểu thức \(A=\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{1}{z^2}\right)\left(\dfrac{y^2+z^2}{y^2z^2}-\dfrac{1}{x^2}\right)\left(\dfrac{z^2+x^2}{z^2x^2}-\dfrac{1}{y^2}\right)\)
Trong đó \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) .Chứng minh A luôn có giá trị âm với mọi x,y,z#0
Tính:
\([\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2y^2}]\cdot\dfrac{2y}{x^3-y^3}\)
Thực Hiên phép tính :
\(\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
Tính x, y biết rằng x và y thỏa mãn các đẳng thức sau (a, b là các hằng số) :
a) \(\left(4a^2-9\right)x=4a+4\) với \(a\ne\pm\dfrac{3}{2}\) và \(\left(3a^3+3\right)y=6a^2+9a\) với \(a\ne-1\)
b) \(\left(2a^3-2b^3\right)x-3b=3a\) với \(a\ne b\) và \(\left(6a+6b\right)y=\left(a-b\right)^2\) với \(a\ne-b\)
(Chú ý rằng \(a^2+ab+b^2=a^2+2a.\dfrac{b}{2}+\dfrac{b^2}{4}+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Do đó nếu \(a\ne0\) hoặc \(b\ne0\) thì \(a^2+ab+b^2>0\) )
Làm phép tính nhân phân thức :
a) \(\dfrac{30x^3}{11y^2}.\dfrac{121y^5}{25x}\)
b) \(\dfrac{24y^5}{7x^2}.\left(-\dfrac{21x}{12y^3}\right)\)
c) \(\left(-\dfrac{18y^3}{25x^4}\right).\left(-\dfrac{15x^2}{9y^3}\right)\)
d) \(\dfrac{4x+8}{\left(x-10\right)^3}.\dfrac{2x-20}{\left(x+2\right)^2}\)
e) \(\dfrac{2x^2-20x+50}{3x+3}.\dfrac{x^2-1}{4\left(x-5\right)^3}\)
Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
\(\left(1-\dfrac{1}{x+1}\right)\).\(\left(1-\dfrac{1}{x-2}\right)\).\(\left(1-\dfrac{1}{x+3}\right)\)....\(\left(1-\dfrac{1}{x+2017}\right)\)
Cho:
\(\left(1-\dfrac{1}{x+1}\right)\)\(\left(1-\dfrac{1}{x-2}\right)\)\(\left(1-\dfrac{1}{x+3}\right)\)......\(\left(1-\dfrac{1}{x+2017}\right)\)
Tìm GTLN của \(A=\dfrac{\left(x+2\right)^2}{2}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)