\(\left(1-\dfrac{1}{x+1}\right)\).\(\left(1-\dfrac{1}{x-2}\right)\).\(\left(1-\dfrac{1}{x+3}\right)\)....\(\left(1-\dfrac{1}{x+2017}\right)\)
Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
Cho biểu thức \(A=\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{1}{z^2}\right)\left(\dfrac{y^2+z^2}{y^2z^2}-\dfrac{1}{x^2}\right)\left(\dfrac{z^2+x^2}{z^2x^2}-\dfrac{1}{y^2}\right)\)
Trong đó \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) .Chứng minh A luôn có giá trị âm với mọi x,y,z#0
\(\dfrac{3}{x-1}-\dfrac{x^3-x}{x^2+1}\left(\dfrac{4}{x^2-2x+1}-\dfrac{4}{x^2-1}\right)\)
Tìm GTLN của \(A=\dfrac{\left(x+2\right)^2}{2}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
a) \(\dfrac{x^3-1}{x+2}.\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\)
b) \(\dfrac{x^3+2x^2-x-2}{2x+10}\left(\dfrac{1}{x-1}-\dfrac{2}{x+1}+\dfrac{1}{x+2}\right)\)
Làm phép tính nhân phân thức :
a) \(\dfrac{30x^3}{11y^2}.\dfrac{121y^5}{25x}\)
b) \(\dfrac{24y^5}{7x^2}.\left(-\dfrac{21x}{12y^3}\right)\)
c) \(\left(-\dfrac{18y^3}{25x^4}\right).\left(-\dfrac{15x^2}{9y^3}\right)\)
d) \(\dfrac{4x+8}{\left(x-10\right)^3}.\dfrac{2x-20}{\left(x+2\right)^2}\)
e) \(\dfrac{2x^2-20x+50}{3x+3}.\dfrac{x^2-1}{4\left(x-5\right)^3}\)
Cho biểu thức A = \(\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right]\)\(\dfrac{x^2-2x+1}{2}\)
a) Tìm điều kiện xác định của A và rút gọn A
b) Tìm x để A = -2
c) Tìm giá trị nhỏ nhất của A
Thực hiện phép tính sau bằng 2 cách: dùng tính chất phân phối của phép nhân với phép cộng và không dùng tính chất này
a). \(\dfrac{x^3-1}{x+2}\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\)
b). \(\dfrac{x^3+2x^2-x-2}{2x+10}\left(\dfrac{1}{x-1}-\dfrac{2}{x+1}+\dfrac{1}{x+2}\right)\)