a,\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right].\dfrac{x^2-2x+1}{2}\)
A xác định \(\Leftrightarrow x-1\ne0\)
\(\Leftrightarrow x\ne1\)
Rút gọn:
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\left(x+2\right)\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\dfrac{x+2}{1}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left[\dfrac{\left(x-2\right)\left(x+1\right)}{x-1}-\dfrac{\left(x+2\right)\left(x-1\right)}{x-1}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(A=\left(\dfrac{x^2-x-2-x^2-x+2}{x-1}\right).\dfrac{\left(x-1\right)^2}{2}\)
\(A=\dfrac{-2}{x-1}.\dfrac{\left(x-1\right)^2}{2}\)
\(A=\dfrac{-2.\left(x-1\right)^2}{\left(x-1\right).2}\)
\(A=-x+1\)
b,\(A=-2\Leftrightarrow-x+1=-2\)
\(\Leftrightarrow-x=-3\)
\(\Leftrightarrow x=3\)