a \(\dfrac{25x^3y}{7z}\cdot\dfrac{28z}{15x^2y^5}\)
b \(\dfrac{x^2+3x+9}{2x+10}\cdot\dfrac{x+5}{x^3+27}\)
c \(\dfrac{3x-6}{x-1}\cdot\dfrac{1-x^3}{10-5x}\)
d \(\dfrac{3x-2}{x^2+1}\cdot\dfrac{x-1-x^2}{4-9x^2}\)
Rút gọn biểu thức :
a) \(\dfrac{x^4+15x+7}{2x^3+2}.\dfrac{x}{14x^2+1}.\dfrac{4x^3+4}{x^4+15x+7}\)
b) \(\dfrac{x^7+3x^2+2}{x^3-1}.\dfrac{3x}{x+1}.\dfrac{x^2+x+1}{x^7+3x^2+2}\)
Làm phép tính nhân phân thức :
a) \(\dfrac{30x^3}{11y^2}.\dfrac{121y^5}{25x}\)
b) \(\dfrac{24y^5}{7x^2}.\left(-\dfrac{21x}{12y^3}\right)\)
c) \(\left(-\dfrac{18y^3}{25x^4}\right).\left(-\dfrac{15x^2}{9y^3}\right)\)
d) \(\dfrac{4x+8}{\left(x-10\right)^3}.\dfrac{2x-20}{\left(x+2\right)^2}\)
e) \(\dfrac{2x^2-20x+50}{3x+3}.\dfrac{x^2-1}{4\left(x-5\right)^3}\)
Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng ) rồi rút gọn biểu thức :
a) \(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}\)
b) \(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\)
c) \(\dfrac{x+2}{4x+24}.\dfrac{x^2-36}{x^2+x-2}\)
Áp dụng tính chất phân phối của phép nhân đối với phép cộng để rút gọn biểu thức :
a) \(\dfrac{x^3}{x+1975}.\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x+1975}.\dfrac{21-x}{x+1}\)
b) \(\dfrac{19x+8}{x-7}.\dfrac{5x-9}{x+1945}-\dfrac{19x+8}{x-7}.\dfrac{4x-2}{x+1945}\)
Cho biểu thức P = \(\dfrac{2x}{x-2}+\dfrac{4}{x^2-5x+6}-\dfrac{1}{x-3}\)
a) Tìm điều kiện để P có nghĩa và rút gọn P.
b) Tìm tất cả các giá trị của x để P nguyên.
Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
a) \(\dfrac{x^3-1}{x+2}.\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\)
b) \(\dfrac{x^3+2x^2-x-2}{2x+10}\left(\dfrac{1}{x-1}-\dfrac{2}{x+1}+\dfrac{1}{x+2}\right)\)
Thực hiện các phép tính sau :
a) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
b) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
c) \(\dfrac{x^3-8}{5x+20}.\dfrac{x^2+4x}{x^2+2x+4}\)
\(\dfrac{3}{x-1}-\dfrac{x^3-x}{x^2+1}\left(\dfrac{4}{x^2-2x+1}-\dfrac{4}{x^2-1}\right)\)