Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
chu thị ánh nguyệt

tính đạo hàm của hàm số sau:

\(y=\sqrt{\dfrac{x^3}{x-1}}\)

help mekhocroi

Sonboygaming Tran
6 tháng 9 2017 lúc 13:22

ADCT: \(\sqrt{u}'=\dfrac{u'}{2\sqrt{u}}\); \(\left(\dfrac{u}{v}\right)'=\dfrac{u'.v-u.v'}{v^2}\)

y'=\(\dfrac{\left(\dfrac{x^3}{x-1}\right)'}{2\sqrt{\dfrac{x^3}{x-1}}}\)

\(\left(\dfrac{x^3}{x-1}\right)'=\dfrac{\left(x^3\right)'.\left(x-1\right)-\left(x-1\right)'.x^3}{\left(x-1\right)^2}\)

=\(\dfrac{3x^2.\left(x-1\right)-x^3}{\left(x-1\right)^2}\)=\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2}\)

=>y'\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2.\sqrt{\dfrac{x^3}{x-1}}}\)=\(\dfrac{2x^3-3x^2}{\sqrt{\left(\dfrac{x}{x-1}\right)^3}}\)


Các câu hỏi tương tự
Nguyễn Kiều Anh
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Vy Nguyễn Đặng Khánh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Julian Edward
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Quỳnh Anh
Xem chi tiết