\(f'\left(x\right)=-\dfrac{1}{x^2}\Rightarrow f'\left(\sqrt{2}\right)=-\dfrac{1}{\left(\sqrt{2}\right)^2}=-\dfrac{1}{2}\)
\(f'\left(x\right)=-\dfrac{1}{x^2}\Rightarrow f'\left(\sqrt{2}\right)=-\dfrac{1}{\left(\sqrt{2}\right)^2}=-\dfrac{1}{2}\)
1. Đạo hàm của hàm số y= \(\left(x^3-5\right).\sqrt{x}\) bằng bao nhiêu?
2. Đạo hàm của hàm số y= \(\dfrac{1}{2}x^6-\dfrac{3}{x}+2\sqrt{x}\) là?
3. Hàm số y= \(2x+1+\dfrac{2}{x-2}\) có đạo hàm bằng?
Tính đạo hàm của hàm số sau:
y=\(\dfrac{x^5}{5}+\sqrt{x}-\dfrac{1}{x}+\dfrac{1}{x^3}-2\)
Cho hàm số \(y=\sqrt{x+\sqrt{x^2+1}}\). Tính đạo gàm của hàm số.
A. \(y'=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}}\)
B. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{\sqrt{x^2+1}}\)
C. \(y'=\dfrac{\sqrt{x^2+1}}{2\sqrt{\sqrt{x+\sqrt{x^2+1}}}}\)
D. \(y'=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)
Tính đạo hàm của các hàm số sau:
a) \(y=x^4-\dfrac{3}{x}+\sqrt{x}-\dfrac{1}{x^2}\)
b) \(y=\dfrac{4sinx-3}{7-5sinx}\)
cho hàm số f(x)=\(\left\{{}\begin{matrix}x^2\\-x^3+bx+c\end{matrix}\right.\)\(\dfrac{khix\le0}{khix>0}\) có đạo hàm tại điểm x0=0 tính tổng c+2b
Tìm đạo hàm của hso \(f\left(x\right)=\dfrac{x}{\left(1+x\right)\left(2+x\right)\left(3+x\right)...\left(2017+x\right)}\) có đạo hàm tại \(x_0=0\)?
Cho 2 số hữu tỉ a và b sao cho \(y=\sqrt{x-1}+\sqrt{2x+1}\) có đạo hàm tại điểm \(x_0=3\) là \(y'\left(3\right)=\dfrac{a}{\sqrt{2}}+\dfrac{b}{\sqrt{7}}\). Tính a+b?
Cho hàm số f(x) = mx^2 +2x +2 khi x>0 và nx +2 khi x<=0. Tìm tất cả các giá trị của các tham số m,n sao cho f(x) có đạo hàm tại x=0
Cho hàm số \(y=\dfrac{1}{2x^2+x-1}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2019}}{\left(2x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}+\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)