Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Hoài Nguyễn

Cho hàm số f(x) = mx^2 +2x +2 khi x>0 và nx +2 khi x<=0. Tìm tất cả các giá trị của các tham số m,n sao cho f(x) có đạo hàm tại x=0

Hoàng Tử Hà
18 tháng 4 2021 lúc 7:45

Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải

Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)

\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)

\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)

\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)

\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)

 


Các câu hỏi tương tự
kim ngân
Xem chi tiết
10D4_Nguyễn Thị Nhật Lin...
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Anh
Xem chi tiết