`5x^2+x-4=0`
`a=5,b=1,c=-4`
`=>Delta=b^2-4ac`
`=1^2+4.4.5`
`=1+80=81`
`=>` CHọn A.81
`5x^2+x-4=0`
`a=5,b=1,c=-4`
`=>Delta=b^2-4ac`
`=1^2+4.4.5`
`=1+80=81`
`=>` CHọn A.81
Cho phương trình x2 + 5x − 4 = 0 . Gọi 1 2 x ; x là hai nghiệm của phương trình. Không
giải phương trinh, hăy tính giá trị biểu thức 2 2
1 2 1 2 Q = x + x + 6x x .
Câu 1:
Cho phương trình: 2x2 + 5x - 8 = 0
a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.
b) Không giải phương trình, hãy tính giá trị biểu thức: \(A=\dfrac{2}{x_1}+\dfrac{2}{x_2}.\)
Câu 2:
Cho biểu thức \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với a ≥ 0; a ≠ 4).
a) Rút gọn biểu thức P.
b) Tính \(\sqrt{P}\) tại a thỏa mãn điều kiện a2 - 7a + 12 = 0.
Câu 3:
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{3}{2}\\3x-2y=5\end{matrix}\right.\)
b) Xác định hệ số a và b của hàm số y = ax + b biết đồ thị của nó là đường thẳng (d) song song với đường thẳng y = x + 2 và chắn trên hai trục tọa độ một tam giác có diện tích bằng 2.
Câu 4:
Cho đường tròn (O; R), đường kính AD. B là điểm chính giữa của nửa đường tròn, C là điểm trên cung AD không chứa điểm B (C khác A và D) sao cho tam giác ABC nhọn.
a) Chứng minh tam giác ABD vuông cân.
b) Kẻ AM ⊥ BC, BN ⊥ AC. Chứng minh tứ giác ABMN nội tiếp. Xác định tâm I đường tròn ngoại tiếp tứ giác ABMN.
c) Chứng minh điểm O thuộc đường tròn (I).
Cho phương trình x2 + 5x − 4 = 0 . Gọi x1 ; x2 là hai nghiệm của phương trình. Không giải phương trinh, hăy tính giá trị biểu thức
Q = x12 + x22 + 6x1 x 2.
cho phương trình :
\(x^2+5x-2m+1=0\)
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn \(x_1-2x_2=4\)
CHo pt x-4x-3=0 có 2 nghiệm phân biệt x1,x2 không giải phương trình hãy tính giá trị của biểu thức A=\(\dfrac{x1^2}{x2}+\dfrac{x2^2}{x1}\)
3x2+4x-7=0 A/ chứng tỏ phương trình có 2 nghiệm phân biệt B/ không giải phương trình, hay tính giá trị của biếu thức 2x1-(x1-x2-x1x2(
Dùng công thức nghiệm,giải các phương trình sau:
a. \(x^2+3x+4=0\)
b. \(4x^2-4x+1=0\)
c. \(x^2-5x-6=0\)
d. \(3x^2+12x-2=0\)
e. \(x^2+2\sqrt{5}x-1=0\)
f. \(2x^2-4\sqrt{2}x+2=0\)
Cho phương trình: (m + 1) * x ^ 2 - 2(m - 1) * x + m - 2 = 0 (1)(x l hat a hat a n) a) Giải phương trình (1) khi m = 0 . b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt.
Cho phương trình ẩn \(x\): \(x^2-2\left(m-1\right)x-2=0\) (\(m\) là tham số). Tìm \(m\) để phương trình có 2 nghiệm phân biệt \(x_1\), \(x_2\) sao cho biểu thức: \(A=x_1^2+4x_2^2\) có giá trị nhỏ nhất.