a) Cho tỉ lệ thức a/b=c/d Với b/d khác +-3/2 . Chứng minh:
1)2a+3c/2b+3d=2a-3c/2b-3d.
2)a^2+c^2/b^2+d^2=ac/bd
cho a/b=c/d chứng minh:
a, a+c/b+d=a-c/b-c b, 2a+3b/2a-3b=2c-3d/2c-3d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng:
a)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b, \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c, \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (b, d ≠ 0) ta suy ra được các tỉ lệ thức:
a/ \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b/ \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c/ \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
e/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f/ \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
chứng minh a/b= c/d thì 2a+3b/2c+3d=2a+3b/2c-3d
chứng minh a/b= c/d thì 2a+3b/2c+3d=2a-3b/2c-3d
cho a/b=c/d chứng minh 2a+3b/2c+3d=2a-3b/s min2c-3d
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)