\(=>2A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{101}}\)
\(=>2A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{101}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{100}}\right)\)
\(=>A=\dfrac{1}{2^{101}}-\dfrac{1}{2}\)
\(=>2A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{101}}\)
\(=>2A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{101}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{100}}\right)\)
\(=>A=\dfrac{1}{2^{101}}-\dfrac{1}{2}\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Tính :
1, A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+........+\dfrac{1}{100}\)
2, B = \(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.........+\dfrac{99}{100}\)
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
B = \(\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+..........+\dfrac{1}{2^99}-\dfrac{1}{2^100}\)
Tính\(B=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+.........+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
1. Chứng minh rằng:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100}< 1\)
2. Chứng minh rằng:
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100-1}{100!}< 2\)
So sánh:
a) A = \(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\) với 1
b) B = \(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\) với \(\dfrac{1}{2}\)
c) C = \(\dfrac{1}{4^1}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+...+\dfrac{1}{4^{999}}+\dfrac{1}{4^{1000}}\) với \(\dfrac{1}{3}\)
Cần gấp ạ ^^ Cảm ơn trước ^^
Cho biểu thức \(C=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
Chứng minh \(C< \dfrac{3}{16}\)
a,\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+......+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\)
b,A=\(1+5+5^2+5^3+5^4+.....+5^{49}+5^{50}\)
c,A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right).....\left(\dfrac{1}{100^2}-1\right)\)
d,A=\(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
Ai giúp mình thực hiện phép tính này với ạ?? Cảm ơn nhiều!!