Đặt:
\(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\)
\(\Rightarrow2S=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\right)\)
\(\Rightarrow2S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\right)\)\(\Rightarrow S=2-\dfrac{1}{2^{100}}\)
Đặt
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\)
\(A.2=2+1+\dfrac{1}{2}+ ...+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\)
\(\Rightarrow A.2-A=2-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=2-\dfrac{1}{2^{100}}\)
Hok tốt!