a, \(A=1+2+2^2+2^3+..........+2^{49}+2^{50}\)
\(\Leftrightarrow2A=2+2^2+..............+2^{50}+2^{51}\)
\(\Leftrightarrow2A-A=\left(2+2^2+.........+2^{51}\right)-\left(1+2+......+2^{50}\right)\)
\(\Leftrightarrow A=2^{51}-1\)
a) \(A=1+2+2^2+2^3+2^4+...+2^{49}+2^{50}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+2^4+...+2^{49}+2^{50}\right)\)
\(2A=2+2^2+2^3+2^4+2^5+...+2^{50}+2^{51}\)
\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+2^5+...+2^{50}+2^{51}\right)-\left(1+2+2^2+2^3+2^4+...+2^{49}+2^{50}\right)\)
\(A=2^{51}-1\) vậy \(A=2^{51}-1\)
b) \(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+\left(\dfrac{1}{2}\right)^5+...+\left(\dfrac{1}{2}\right)^{99}+\left(\dfrac{1}{2}\right)^{100}\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\)
\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\right)\)
\(2B=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+\dfrac{2}{2^4}+\dfrac{2}{2^5}+...+\dfrac{2}{2^{99}}+\dfrac{2}{2^{100}}\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2B-B=B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^{99}}+\dfrac{1}{2^{100}}\right)\)
\(B=1-\dfrac{1}{2^{100}}\) vậy \(B=1-\dfrac{1}{2^{100}}\)