Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Minh

Bài 1 : Tính giá trị chưa biết :

\(1^1_{30}:(24^1_6-24^1_5)-1^1_2-\dfrac{3}{4}:4x-\dfrac{1}{2}=(-1^1_{15}):\left(8^1_5-8^1_3\right)\)

Bài 2 : Chứng Minh Rằng

A = \(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+...+\dfrac{36}{25.27.29}< 3\)

B= \(\dfrac{1}{12}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}< 2\)

Bài 3 : Cho P = \(\dfrac{2}{60.63}+\dfrac{2}{63.66}+...+\dfrac{2}{117+120}+\dfrac{2}{2011}\)

Q =\(\dfrac{5}{40.44}+\dfrac{5}{44.48}+...+\dfrac{5}{76.80}+\dfrac{5}{2011}\)

So sánh P và Q

Mới vô
9 tháng 8 2017 lúc 15:48

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

Mới vô
10 tháng 8 2017 lúc 10:38

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q


Các câu hỏi tương tự
ĐỨC TRỌNG
Xem chi tiết
ĐỨC TRỌNG
Xem chi tiết
Dinh Thi Hai Ha
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Bùi Ngọc Tố Uyên
Xem chi tiết