b ) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)
\(=\dfrac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{4^2-\left(3\sqrt{2}\right)^2}\)
\(=\dfrac{2\left(4+3\sqrt{2}-4+3\sqrt{2}\right)}{-2}\)
\(=\dfrac{2.6\sqrt{2}}{-2}=-6\sqrt{2}\)
b ) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)
\(=\dfrac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{4^2-\left(3\sqrt{2}\right)^2}\)
\(=\dfrac{2\left(4+3\sqrt{2}-4+3\sqrt{2}\right)}{-2}\)
\(=\dfrac{2.6\sqrt{2}}{-2}=-6\sqrt{2}\)
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
Rút gọn các biểu thức:
1. \(\sqrt{28}-2\sqrt{252}+3\sqrt{175}+3\sqrt{567}\)
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{7-4\sqrt{3}}\)
3. \(\sqrt{9-4\sqrt{5}}-\sqrt{\dfrac{8}{7-3\sqrt{5}}}\)
4. \(\dfrac{\sqrt{3}}{2-\sqrt{3}}+\dfrac{2}{2+\sqrt{3}}\)
5. \(\dfrac{2\sqrt{2}+1}{1+\sqrt{2}}+\dfrac{1-2\sqrt{2}}{1-\sqrt{2}}+\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)\)
6. \(\sqrt{\dfrac{2}{3-\sqrt{5}}}+\sqrt{\dfrac{2}{7+\sqrt{45}}}\)
7. \(\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}-1}-\dfrac{\sqrt{2}}{\sqrt{1+\sqrt{2}}+1}\)
8. \(\sqrt{6-2\sqrt{5}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
Rút gọn
A= \(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\)\(\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
B= \(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}\)
C= \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Tính :
a) \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...\:+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
b) \(\sqrt{\dfrac{16}{\left(\sqrt{3}-\sqrt{2}\right)^2}}+\sqrt{\dfrac{9}{\left(\sqrt{3}+\sqrt{2}\right)^2}}\)
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
Tính
\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
Làm mất căn mẫu và thu gọn
1) \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2) \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
3) \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\dfrac{1}{\sqrt{5}}\)
4) \(\dfrac{1}{1+\sqrt{2}}-\dfrac{1}{1-\sqrt{2}}\)
5) \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{\sqrt{5}-3}\)
6) \(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\)
7) \(\dfrac{4}{1-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
8) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3}{\sqrt{2}-1}\)
9) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}-1}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}+1}\)
10) \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{1}{2-\sqrt{3}}\)
11) \(\dfrac{5}{1+\sqrt{6}}-\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}\)
12) \(\dfrac{5}{3-\sqrt{7}}-\dfrac{3}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}\)
Giúp em giải với ạ! Help me~!
Rút gọn pt
a, \(-\dfrac{2}{3}\sqrt{\dfrac{\left(a-b\right)^3.b^5}{c}.\dfrac{9}{4}\sqrt{\dfrac{c^3}{2\left(a-b\right)}}\sqrt{ }98b}\)
b, \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\dfrac{1}{ab}}\right).\sqrt{ab}\)
c, \(\left(\sqrt{b}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
d, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)