ta có : \(A=\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
\(=\sqrt{\dfrac{2}{3}}\left(\dfrac{9}{2}+2-6\right)\sqrt{\dfrac{2}{3}}\left(3-3\sqrt{2}-3\right)\)
\(\dfrac{2}{3}\dfrac{1}{2}\left(-3\sqrt{2}\right)=-\sqrt{2}\)
ta có : \(B=\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{6+2\sqrt{5}}}{2}-\dfrac{\sqrt{5}-1}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)
ta có : \(C=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)+\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{2\sqrt{6}}{2\sqrt{3}}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)