Tính
\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=1\)
b)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)
\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)
\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)
\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)
\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)
\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)
\(=-\dfrac{3\sqrt{3}+3}{6}\)
\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)
\(=-\dfrac{\sqrt{3}+1}{2}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
\(=\dfrac{\left(1+\dfrac{\sqrt{3}}{2}\right)\cdot\left(1-\sqrt{1+\dfrac{\sqrt{3}}{2}}\right)}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\dfrac{\sqrt{3}}{2}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3\left(1+\dfrac{\sqrt{3}}{2}\right)}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)\cdot2}{\sqrt{3}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(2-\sqrt{3}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\sqrt{3}}\)
\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{\sqrt{3}}+\dfrac{2+2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{3}}{2}}}{\sqrt{3}}\)
\(=\dfrac{-\left(2-2\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}\right)+2\cdot2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{2}}{2}}}{\sqrt{3}}\)
\(=1\)