Đặt \(\dfrac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\dfrac{m}{n}\) \(\left(m,n\in N^{\cdot};\left(m,n\right)=1\right)\)
\(\Leftrightarrow nx-my=\left(mz-ny\right)\sqrt{2013}\)
\(\Rightarrow\left\{{}\begin{matrix}nx-my=0\\mz-ny=0\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{m}{n}\Rightarrow xz=y^2\)
\(x^2+y^2+z^2=\left(x+z\right)^2-2xz=\)\(\left(x+z\right)^2-y^2\)
\(=\left(x+z-y\right)\left(x+y+z\right)\)
Vì \(x,y,z\in N^{\cdot}\)\(\Rightarrow x+y+z>x-y+z\)
Vì \(x^2+y^2+z^2\) là SNT nên
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{matrix}\right.\)
\(\Rightarrow x=y=z=1\) (t/m)