Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hello sun

tìm x,y,z biết 

\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}=\dfrac{1}{2}\left(x+y+z\right)\)

Hồng Phúc
26 tháng 8 2021 lúc 23:10

ĐK: \(x\ge-1;y\ge3;z\ge1\)

\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}=\dfrac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow x+1-2\sqrt{x+1}+1+y-3-2\sqrt{y-3}+1+z-1-2\sqrt{z-1}+1=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2=0\)

Ta thấy: \(\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2\ge0\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-3}=1\\\sqrt{z-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)

Hồng Phúc
26 tháng 8 2021 lúc 23:13

Cách khác:

ĐK: \(x\ge-1;y\ge3;z\ge1\)

Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\).

\(\sqrt{x+1}\le\dfrac{x+1+1}{2}=\dfrac{x+2}{2}\)

\(\sqrt{y-3}\le\dfrac{y-3+1}{2}=\dfrac{y-2}{2}\)

\(\sqrt{z-1}\le\dfrac{z-1+1}{2}=\dfrac{z}{2}\)

Cộng vế theo vế các BĐT trên ta được:

\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}\le\dfrac{1}{2}\left(x+y+z\right)\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-3}=1\\\sqrt{z-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)


Các câu hỏi tương tự
prayforme
Xem chi tiết
Hoàng Sơn
Xem chi tiết
Lil Bitch
Xem chi tiết
Trai Vô Đối
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyen Thuy Linh
Xem chi tiết
Long Trần Bảo
Xem chi tiết
Thanh Mai Đinh
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết