\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)
\(=\frac{4}{4}.\frac{5z-6y}{4}=\frac{5}{5}.\frac{6x-4z}{5}=\frac{6}{6}.\frac{4y-5x}{6}\)
\(=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}=\frac{\left(20z-24y\right)+\left(30x-20z\right)+\left(24y-30x\right)}{16+25+36}\)
\(=\frac{20z-24y+30x-20z+24y-30x}{77}=\frac{\left(30x-30x\right)\left(24y-24y\right)\left(20z-20z\right)}{77}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}5z=6y\\6x=4z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{6}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{6}\end{matrix}\right.\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)
\(=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=3\\\frac{y}{5}=3\\\frac{z}{6}=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=3.5=15\\z=3.6=18\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=12\\y=15\\z=18\end{matrix}\right.\)