Đặt \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3z}{4}=k\Rightarrow x=2k;y=\dfrac{3k}{2};z=\dfrac{4k}{3}\)
Khi đó \(xyz=-108\Leftrightarrow2k\cdot\dfrac{3k}{2}\cdot\dfrac{4k}{3}=-108\)
\(\dfrac{24k^3}{6}=-108\Leftrightarrow4k^3=-108\)
\(\Leftrightarrow k^3=-27\Rightarrow k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=2\cdot\left(-3\right)=-6\\y=\dfrac{3k}{2}=\dfrac{3\cdot\left(-3\right)}{2}=-\dfrac{9}{2}\\z=\dfrac{4k}{3}=\dfrac{4\cdot\left(-3\right)}{3}=-4\end{matrix}\right.\)