**********************************************************
Ta có: \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}=3\)
\(\Leftrightarrow\dfrac{xyz}{z^2}+\dfrac{xyz}{y^2}+\dfrac{xyz}{x^2}=3\)
\(\Leftrightarrow xyz\left(\dfrac{1}{z^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2}\right)=3=1\cdot3=3\cdot1\) (Vì x,y,z dương)
TH1: \(\left\{{}\begin{matrix}xyz=1\\\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\end{matrix}\right.\) \(\Rightarrow x=y=z=1\) (TM)
TH2: \(\left\{{}\begin{matrix}xyz=3\\\dfrac{1}{x^2}+\dfrac{1}{y^1}+\dfrac{1}{z^2}=1\end{matrix}\right.\) \(\Rightarrow x=y=z=\varnothing\)
Vậy x=y=z=1