\(\dfrac{x^2}{2}\)+\(\dfrac{y^2}{3}\) +\(\dfrac{z^2}{4}\) =\(\dfrac{x^2+y^2+z^2}{5}\)
⇒\(30x^2\)+\(20y^2\)+\(15z^2\)=\(12x^2\)+\(12y^2\)+\(12z^2\)
⇒\(18x^2\)+\(8y^2\)+ \(3z^2\)=0
⇒\(18x^2\)≥0 \(8y^2\)≥0 \(3z^2\)≥0
Nên \(18x^2\) + \(8y^2\) + \(3z^2\) ≥0
Vậy \(18x^2\) + \(8y^2\) + \(3z^2\)= 0
Khi và chỉ khi:
\(18x^2\)= 0;\(8y^2\)= 0;\(3z^2\)= 0
Vậy x=y=z=0