\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)=1993\)
Phương trình ước số cơ bản (còn rất đơn giản vì 1993 là số nguyên tố nên có đúng 2 ước)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)=1993\)
Phương trình ước số cơ bản (còn rất đơn giản vì 1993 là số nguyên tố nên có đúng 2 ước)
Cho x, y, z là các số dương thỏa mãn: \(x^{2011}+y^{2011}+z^{2011}=3\). Tìm GTLN của biểu thức: \(M=x^2+y^2+z^2\)
Cho x, y, z là các số dương thỏa mãn: \(x^{2011}+y^{2011}+z^{2011}=3\). Tìm GTLN của biểu thức: \(M=x^2+y^2+z^2\)
Tìm 3 bộ số x, y, z thỏa mãn: \(\left\{{}\begin{matrix}x+y+z\le9\\\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}+5x+4y+3z=xy+yz+xz+11\end{matrix}\right.\)
Cho 3 số thực x,y,z thỏa mãn \(\dfrac{1}{x^{2}} + \dfrac{1}{y^{2}} + \dfrac{1}{z^{2}}\)= 3
Tìm GTNN của biểu thức P = \(\dfrac{y^{2}z^{2}}{x(y^{2}+z^{2})} + \dfrac{z^{2}x^{2}}{y(z^{2}+x^{2})} + \dfrac{x^{2}y^{2}}{z(x^2+y^2)}\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Tìm bộ ba số thực x, y, z thỏa mãn: \(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{z}}-\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{xz}}=\dfrac{1}{3}\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Cho 3 số thực không âm x ,y ,z thỏa mãn x + y + z = 2 . Chứng minh rằng : x + 2y + z >= (2 - x)(2 - y)(2 - z)