:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
1, 2x2 - 8xy - 5x + 20y
2, x3 - x2y - xy + y2
3, x2 - 2xy - 4z2 + y2
4, a3 + a2b - a2c - abc
5, x3 + y3 + 3x2y + 3xy2 - x - y
6, x3 + x2y - x2z - xyz
7, x(y+z)2 + y(z+x)2 + z(x+y)2 - 4xyz
8, x3(z-y) + y3(x-z) + z3(y-x)
Tìm nghiệm nguyên của các phương trình sau:
a) 2xy - 4x - y = 1
b) (2x - 1)(y - 2) = 3
c) 2xy - x - y +1 = 0
d) 2xy - 4x + y = 7
e) 3xy + x - y = 1
f) xy + 3x - 5y = -3
g) 4x + 11y = 4xy
Phân tích đa thức thành nhân tử :
A = \(x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
B = \(x^2.\left(y-z\right)+y^2.\left(z-x\right)+z^2.\left(x-y\right)\)
Nhờ các bạn giúp. Mình cần gấp. Cảm ơn!
Tìm GTNN cuả B= 3xy(x+ 3y) - 2xy(x+4y) - x2(y-1) + y2(1-x) + 36
1) Cho x- y= 7. Tính \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-2017\)
2) Cho x+ y= 3 và \(x^2+y^2=5\) Tính \(x^3+y^3\)
x- y= 5 và \(x^2+y^2=1\)Tính \(x^3-y^3\)
3)Tìm x, y sao cho
a) \(A=2x^2+9y^2-6xy-6x-12y+2018\) có GTNN
b)\(B=-x^2+2xy-4y^2+2x+10y-8\) có GTLN
4) Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\) . Chứng minh \(a^3-3ab+2c=0\)
5) Cho a>b>c. Thỏa mãn \(3a^2+3b^2=10ab\)
Tính \(P=\dfrac{a-b}{a+b}\)
6) Cho x>y>0 và \(2x^2+2y^2=5xy\) Tính \(E=\dfrac{x+y}{x-y}\)
7) Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.