\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(=x^2+y^2+36\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow x^2+y^2\ge0\)
\(\Leftrightarrow B=x^2+y^2+36\ge36\)
Dấu " = " khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Vậy \(MIN_B=36\) khi x = y = 0
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(B=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(B=x^2+y^2+36\ge36\)
Vậy \(Bmin=36\Leftrightarrow x=y=0\)
Ta có : B= 3xy(x+3y) - 2xy(x+4y) - x2(y-1)+y2(1-x)+36 = 3x2ý+9xy2-2x2y-8xy2-x2y+x2+y2-xy2+36 =x2+y2+36 \(\ge36\) Dấu "=" xảy ra khi x=y=0 Vậy Min B=36 <=> x=y=0