bài 1) a) \(A=\left(2x-5\right)^2-4\left(2x-5\right)+5=4x^2-20x+25-8x+20+5\)
\(A=4x^2-28x+49+1=\left(2x-7\right)^2+1\ge1\forall m\)(đpcm)
b) \(A=\left(2x-7\right)^2+1\ge1\) \(\Rightarrow minA=1\Leftrightarrow\left(2x-7\right)^2=0\Leftrightarrow2x-7=0\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)
Bài 1:
a)\(A=\left(2x-5\right)^2-4\left(2x-5\right)+5\)
\(=\left(2x-5\right)^2-4\left(2x-5\right)+4+1\)
\(=\left(2x-5-2\right)^2+1\)
\(=\left(2x-7\right)^2+1\ge1\)
b)Xảy ra khi \(\left(2x-7\right)^2=0\)
\(\Rightarrow2x-7=0\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
Bài 2:
a)\(B=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(=-\left(3x+7\right)^2+2\left(3x+7\right)-1-16\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1\right]-16\)
\(=-\left(3x+7-1\right)^2-16\)
\(=-\left(3x+6\right)^2-16\le-16\)
b)Xảy ra khi \(-\left(3x+6\right)^2=0\)
\(\Rightarrow3x+6=0\Rightarrow3x=-6\Rightarrow x=-2\)