a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)
Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)
*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)
*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)
b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)