a) Đk x\(\ne0,-1,\dfrac{1}{2}\)
rút gọn: \(\dfrac{\left(x+2\right)\left(x+1\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\dfrac{x+1}{1-2x}\)
=\(\dfrac{x^2+3x+2+6x-9x^2-9x}{3x}.\dfrac{1}{1-2x}\)
=\(\dfrac{-8x^2+2}{3x}.\dfrac{1}{1-2x}\)
=\(\dfrac{2\left(1-4x^2\right)}{3x}.\dfrac{1}{1-2x}\)
=\(\dfrac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\dfrac{1}{1-2x}\)
=\(\dfrac{2\left(1+2x\right)}{3x}\)
b)tìm x để A=\(\dfrac{2+4x}{3x}>1\)
\(\Leftrightarrow2+4x>3x\)
\(\Leftrightarrow x>-2\)
c)tìm GTLN CỦA B=A.\(\dfrac{3x}{x^2+2}\)
B=\(\dfrac{2+4x}{3x}.\dfrac{3x}{x^2+2}\)
B=\(\dfrac{2+4x}{x^2+2}\)
B=\(\dfrac{2+4x}{x^2+2}-2+2\)
B=\(\dfrac{-2x^2+4x-2}{x^2+2}+2\)
B=\(\dfrac{-2\left(x^2-2x+1\right)}{x^2+2}+2\)
B=\(-\dfrac{\left(x-1\right)^2}{x^2+2}+2\le2\forall x\in R\)
Dấu"=" xảy ra\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(B_{max}=2\Leftrightarrow x=1\)