Để A là số nguyên thì x2-2x+5 chia hết x-1
Do x2-2x +5= x(x-1)-x+5= x-x+5=5
Nên 5 chia hết x-1 =>x-1 eƯ(5)=(-5;-1;1;5)
=>x e(-4;0;2;6)
Vậy x e(-4;0;2;6)
Ta có A = \(\dfrac{x^2-2x+5}{x-1}=\dfrac{\left(x^2-x-x+1\right)+4}{x-1}=\dfrac{x\left(x-1\right)-\left(x-1\right)+4}{x-1}\)
=\(\dfrac{\left(x-1\right)^2+4}{x-1}=\left(x-1\right)+\dfrac{4}{x-1}\)
Để A nguyên thì (x-1) ⋮ 4
=> (x-1) ∈ Ư(4) = ( -4;-2;-1;1;2;4)
x-1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -3 | -1 | 0 | 2 | 3 | 5 |
Vậy x ϵ (-3;-1;0;2;3;5)