a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
a,\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|=4x\)
Ta có: \(\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{3}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\end{cases}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|=x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}\)
Khi đó, ta có: \(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
\(\Rightarrow3x+1=4x\)
\(\Rightarrow x=1\)
b) Từ đề suy ra:
\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\frac{x+34}{\left(x+3\right)\left(x+34\right)}-\frac{x+3}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow x=31\)
b) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(=>\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(=>\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}=>\frac{x+34-x-3}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(=>\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}=>x=31\)