Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thị Phương Anh
Tìm x

a,\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|=4x\)

b,\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

 

Hoàng Phúc
15 tháng 6 2016 lúc 20:34

a) Dễ thấy VT > 0;mà VT=VP

=>VP > 0 => 4x > 0=> x > 0

=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)

\(=>3x+1=4x=>x=1\)

Đặng Minh Triều
15 tháng 6 2016 lúc 20:38

a)  Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )

Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)

<=>x=1

Vậy x=1

b)Điều kiện: \(x\ne-3;-10;-21;-34\)

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

=>x+34-x-3=x

<=>x=31 (nhận)

Vậy x=31

Kiệt ღ ๖ۣۜLý๖ۣۜ
15 tháng 6 2016 lúc 20:44

a,\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|=4x\)

Ta có: \(\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{3}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\end{cases}\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\)

\(\Rightarrow4x\ge0\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|=x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}\)

Khi đó, ta có: \(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)

\(\Rightarrow3x+1=4x\)

\(\Rightarrow x=1\)

b) Từ đề suy ra:

\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\frac{x+34}{\left(x+3\right)\left(x+34\right)}-\frac{x+3}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(\Rightarrow x=31\)

Hoàng Phúc
15 tháng 6 2016 lúc 20:41

b) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(=>\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(=>\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}=>\frac{x+34-x-3}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

\(=>\frac{31}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}=>x=31\)


Các câu hỏi tương tự
Huỳnh Yến Nhi
Xem chi tiết
Trần Lưu Gia Ngân
Xem chi tiết
Ngô Châu Bảo Oanh
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Khuất Thị Thảo Nguyên
Xem chi tiết
Công Chúa Hoa Hồng
Xem chi tiết
Trương Mai Khánh Huyền
Xem chi tiết
Phương Uyên
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết