giải hệ sau \(\left\{{}\begin{matrix}x=3y^3+2y^2+y\\y=3z^3+2z^2+z\\z=3x^3+2x^2+x\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{matrix}\right.\)
1 cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
CM: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
2 Giải hệ pt
\(\left\{{}\begin{matrix}x^2+y^2-xy=5\\x^3+y^3=5x+15y\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
giải hệ phương trình:
a)\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y-z\right)\\4xz=3\left(x+y\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\\7x-3y+2z=37\end{matrix}\right.\)
Tìm 3 bộ số x, y, z thỏa mãn: \(\left\{{}\begin{matrix}x+y+z\le9\\\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}+5x+4y+3z=xy+yz+xz+11\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}3x-2y+z=14\\2x+y-z=3\\z-2x=-5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-y^2=4y+2x+3\\x^2+2x+y=0\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left|xy-4\right|=8-y^2\\xy=2+x^2\end{matrix}\right.\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\dfrac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{matrix}\right.\)
Cho 3 số dương x;y;z thỏa mãn x+y+z=6. CMR: \(x^2+y^2+z^2-xy-yz-xz+xyz\ge8\)
GHPT
\(\left\{{}\begin{matrix}x^3-3z^2+6z-8=0\\y^3-3x^2+6x-8=0\\z^3-3y^3+6y-8=0\end{matrix}\right.\)