Cho x,y,z,t \(\ge\) 0 và 2x + xy + z + yzt = 1. Tìm GTLN của I = x2y2z2.t
Cho x,y,z,t \(\ge\) 0 và xt + xy + z + yzt = 1. Tìm GTLN của K = xyzt
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
Tính \(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)+\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)+\left(1+y^2\right)}{1+z^2}}\)
a) Cho x, y, z thuộc R. Cmr: \(\left(x+y+z\right)^2>=3.\left(xy+yz+zx\right)\)
b) Cho 3 số dương x, y, z thỏa mãn x + y +z = 1. Tìm giá trị nhỏ nhất của biểu thức:
M = \(\frac{5}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)
\(\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}\) +\(\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) a.tìm đk của x y để p được xác định
b.rút gọn p
c,tìm x;y nguyên để p thuộc Z
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
Cho x, y, z dương TM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm min \(T=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
Cho 3 số dương x,y,z thoả mãn điều kiện : xy+yz+zx=1. Tính:
\(A=x\sqrt{\dfrac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mn giúp e vs an, e đang cần gấp, cảm ơn mn nhiều lắm lắm
Cho x, y, z là các số thực dương thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Tính giá trị của biểu thức: \(P=\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
tìm max:
a, \(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với 1/2<=x<= căn 5/2
b, \(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)};x,y,z>0\)