\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\) (1)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{14}=3\)
Ta có:
\(\frac{3x}{54}=3\Rightarrow x=54\)
\(\frac{y}{30}=3\Rightarrow y=90\)
\(\frac{2z}{70}=3\Rightarrow z=105\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{3x}{9}=\frac{y}{5}\Rightarrow\frac{3x}{54}=\frac{y}{30}\)
\(\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{y}{6}=\frac{2z}{14}\Rightarrow\frac{y}{30}=\frac{2z}{70}\)
=> \(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , có :
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{12}=3\)
\(\Rightarrow\begin{cases}\frac{3x}{54}=3\\\frac{y}{30}=3\\\frac{2z}{70}=3\end{cases}\) \(\Rightarrow\begin{cases}x=54\\y=90\\z=105\end{cases}\)
Vậy x = 54
y = 90
z = 105
Ta có : \(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{x}{18}=\frac{y}{30};\frac{y}{30}=\frac{z}{35}\)
\(\frac{x}{18}=\frac{y}{30}=\frac{z}{35}\Rightarrow\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}\) và 3x + y - 2z = 42
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{54}=\frac{y}{30}=\frac{2z}{70}=\frac{3x+y-2z}{54+30-70}=\frac{42}{14}=3\)
\(\Rightarrow\frac{3x}{54}=3\Rightarrow x=54\)
\(\Rightarrow\frac{y}{30}=3\Rightarrow y=90\)
\(\Rightarrow\frac{2z}{70}=3\Rightarrow z=105\)