Ta có :
\(2x=3y=5z\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)
\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)
\(2x=3y=5z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)
\(\frac{x}{2}=4\Rightarrow x=8\)\(\frac{y}{3}=4\Rightarrow y=12\)\(\frac{z}{5}=4\Rightarrow z=20\)Vậy: \(\left(x,y,z\right)=\left(8,12,20\right)\)
Từ 2x = 3y = 5z => \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) = k
=> \(\begin{cases}x=2k\\y=3k\\z=5k\end{cases}\)
Mà x + y + z = 40 => 2k + 3k + 5k = 40
=> k = 4
=> \(\begin{cases}x=8\\y=12\\z=20\end{cases}\)