\(\left|2x-27\right|^{2019}+\left|3y+10\right|^{2020}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left|2x-27\right|^{2019}\ge0\\\left|3y+10\right|^{2020}\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left|2x-27\right|^{2019}+\left|3y+10\right|^{2020}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|^{2019}=0\\\left|3y+10\right|^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|=0\\\left|3y+10\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=27\\3y=-10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27:2\\y=\left(-10\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{27}{2}\\y=-\frac{10}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{27}{2};-\frac{10}{3}\right\}.\)
Chúc bạn học tốt!