Ta có: \(\left(2x-1\right)^{2020}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\)
Do đó: \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}\ge0\forall x,y\)
mà \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}=0\)
nên \(\left\{{}\begin{matrix}\left(2x-1\right)^{2020}=0\\\left(y-\frac{2}{5}\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=\frac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x=\frac{1}{2}\); \(y=\frac{2}{5}\)