a) \(x^2+3x+3=\left(x^2+3x\right)+3\)
= \(x\left(x+3\right)+3\)
Để \(x^2+3x+3⋮x+3\)
<=> \(x\left(x+3\right)+3⋮\left(x+3\right)\)
mà \(x\left(x+3\right)⋮x+3\)
<=> \(3⋮x+3\)
<=> \(\left(x+3\right)\inƯ\left(3\right)\)
Ta có bảng:
x+3 | 1 | 3 | -1 | -3 |
x | -2 | 0 | -4 | -6 |
b) \(x^2+x+2=x\left(x+1\right)+2\)
Để \(x^2+x+2⋮x+1\)
<=> \(x\left(x+1\right)+2⋮x+1\)
mà \(x\left(x+1\right)⋮x+1\)
<=> 2\(⋮x+1\)
<=> \(x+1\inƯ\left(2\right)\)
ta có bảng:
x+1 | 1 | 2 | -1 | -2 |
x | 0 | 1 | -2 | -3 |