\(\left|x+1\right|+x=2\)
\(pt\Leftrightarrow\left|x+1\right|=2-x\)
\(\Leftrightarrow\left(\left|x+1\right|\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow x^2+2x+1=x^2-4x+4\)
\(\Leftrightarrow6x-3=0\Leftrightarrow6x=3\Leftrightarrow x=\dfrac{1}{2}\)
\(\left|x+1\right|+x=2\)
\(pt\Leftrightarrow\left|x+1\right|=2-x\)
\(\Leftrightarrow\left(\left|x+1\right|\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow x^2+2x+1=x^2-4x+4\)
\(\Leftrightarrow6x-3=0\Leftrightarrow6x=3\Leftrightarrow x=\dfrac{1}{2}\)
Tim x biet
\(\left|x+1\right|+x=2\)
Ai lam dung mik tick cho
Tim x
\(\left(2x-1\right)^2=100\)
Tim x
\(\left(-1,25\right)+\dfrac{2}{15}-x=2\)
Tìm x,biết
a, \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Với x ∉ -2,-5,-10,-17
b,\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Với x∉1,3,8,20
c,\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
1) \(\left|x+1\right|=\left|x+3\right|\)
2) \(\left|x+2\right|+\left|x+3\right|=3.x+3\)
3) \(\left|x+1\right|+\left|x+2\right|=4\)
5. Tìm x biết:
a, \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+10\right|=11x+1\)
b, \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
1) \(\left|3x+2\right|=\left|x+1\right|\)
2) \(\left|\left(x+2\right)\times x\right|=\left|x+2\right|\)
3) \(\left|2x+3\right|=x+1\)
4) \(\left|4x+5\right|+3.x=7\)
Tìm min của:
1) F = \(\left|x+1\right|+\left|x+2\right|+\left|x-1\right|+\left|x-2\right|\)
2) G = \(x^2+y^2+2\)
3) H = \(\left(x+1\right)^2+\left(y-2\right)^2+3\)
tìm x;y
b \(\left|x-y\right|+\left|y+\dfrac{9}{25}=0\right|\)
c \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
a \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{-1}{4}-y\)
d \(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\) \(\left(x\ge0\right)\)
e \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)