Ta có : \(\frac{x}{4}=\frac{y}{2}=\frac{z}{5}\) và \(2y^2+z^2-x^2=17\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{5}=\frac{2y^2+z^2-x^2}{2.2^2+5^2-4^2}=\frac{17}{17}=1\)
\(\Rightarrow\begin{cases}\frac{x}{4}=1\Rightarrow x=1.4=4\\\frac{y}{2}=1\Rightarrow y=2.1=2\\\frac{z}{5}=1\Rightarrow z=5.1=5\end{cases}\)
Vậy .................
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{5}\)
=> \(\frac{x^2}{16}=\frac{2y^2}{8}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x^2}{16}=\frac{2y^2}{8}=\frac{z^2}{25}=\frac{2y^2+z^2-x^2}{8+25-16}=\frac{17}{17}=1\)
=> \(\begin{cases}x^2=1.16=16\\y^2=1.8:2=4\\z^2=1.25=25\end{cases}\) => \(\begin{cases}x\in\left\{4;-4\right\}\\y\in\left\{2;-2\right\}\\z\in\left\{5;-5\right\}\end{cases}\)
Vậy \(\begin{cases}x=4\\y=2\\z=5\end{cases}\); \(\begin{cases}x=-4\\y=-2\\z=-5\end{cases}\)