\(\dfrac{2}{7}\)\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{3}{5}\)\(x\) - 1
\(\dfrac{2}{7}\)\(x\) - \(\dfrac{3}{5}\)\(x\) = - 1 + \(\dfrac{1}{3}\)
(\(\dfrac{2}{7}\) - \(\dfrac{3}{5}\))\(x\) = - \(\dfrac{2}{3}\)
- \(\dfrac{11}{35}\)\(x\) = - \(\dfrac{2}{3}\)
\(x\) = - \(\dfrac{2}{3}\) : (- \(\dfrac{11}{35}\))
\(x\) = \(\dfrac{70}{33}\)
Vậy \(x=\dfrac{70}{33}\)
|3\(x\) + 7| - 3\(x\) = 7
|3\(x\) + 7| = 7 +3\(x\) Vì 7 + 3\(x\) > 0 nên 3\(x\) > -7 ⇒ \(x\) > -\(\dfrac{7}{3}\)
Với \(x\) > - \(\dfrac{7}{3}\) ta có:
3\(x\) + 7 = 7 + 3\(x\)
7 =7 (luôn đúng)
Vậy \(x\) \(\ge\) - \(\dfrac{7}{3}\)
c; |2\(x\) - 1| + |3\(x\) + 2| = 0
|2\(x\) - 1| ≥ 0; |3\(x\) + 2| ≥ 0
⇒ |2\(x\) - 1| + |3\(x\) + 2| = 0
⇔ \(\left\{{}\begin{matrix}2x-1=0\\3x+2=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x=1\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vì \(\dfrac{1}{2}\) > - \(\dfrac{2}{3}\) Vậy \(x\) \(\in\) \(\varnothing\)